Some New Volterra-Fredholm-Type Discrete Inequalities and Their Applications in the Theory of Difference Equations

نویسندگان

  • Bin Zheng
  • Qinghua Feng
  • Martin D. Schechter
چکیده

and Applied Analysis 3 Remark 2.4. Lemma 2.3 is a direct variation of 19, Lemma 2.5 β1 , and we note a m,n ≥ 0 here. Theorem 2.5. Suppose that u m,n , a m,n ∈ ℘ Ω , bi s, t,m, n , ci s, t,m, n ∈ ℘ Ω2 , i 1, 2, . . . , l1, di s, t,m, n , ei s, t,m, n ∈ ℘ Ω2 , i 1, 2, . . . , l2 with bi, ci, di, ei nondecreasing in the last two variables. p, qi, ri are nonnegative constants with p ≥ qi, p ≥ ri, i 1, 2, . . . , l1, p / 0, while hi, ji are nonnegative constants with p ≥ hi, p ≥ ji, i 1, 2, . . . , l2. If, for m,n ∈ Ω, u m,n satisfies

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Gronwall-Bellmann Type Discrete Fractional Inequalities Arising in the Theory of Discrete Fractional Calculus

In this paper, we present some new GronwallBellmann type discrete fractional sum inequalities, and based on them present some Volterra-Fredholm type discrete inequalities. These inequalities are of new forms compared with the existing results in the literature, and can be used in the research of boundedness and continuous dependence on the initial value for solutions of fractional difference eq...

متن کامل

Some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two variables and their applications

In this paper, we establish some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two independent variables, and we present the applications to research the boundedness of solutions to retarded nonlinear Volterra-Fredholm type integral equations.

متن کامل

A class of retarded Volterra-Fredholm type integral inequalities on time scales and their applications

*Correspondence: [email protected] School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, P.R. China Abstract In this paper, we study some new retarded Volterra-Fredholm type integral inequalities on time scales, which provide explicit bounds on unknown functions. These inequalities generalize and extend some known inequalities and can be used as tools in the qualitative theory ...

متن کامل

A numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods

In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

Some New Generalized Volterra-Fredholm Type Nonlinear Discrete Inequalities

Abstract: In this paper, we establish some new generalized Volterra-Fredholm type nonlinear discrete inequalities, based on which we study the boundedness of the solutions of a kind of Volterra-Fredholm type sum-difference equation. As a result, New bounds to the solutions are established under some suitable conditions. The established inequalities are further generalizations of the results by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014